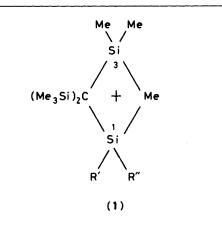
Preparation and Reactions of Difunctional Sterically Hindered Organosilicon Compounds of the Type $(Me_3Si)_2C(SiMe_2X)(SiMe_2Y)$

Colin Eaborn * and David E. Reed

School of Chemistry and Molecular Sciences, University of Sussex, Brighton BN1 9QJ

Reaction of TsiSiMelCl [Tsi = $(Me_3Si)_3C$] with AgY or AgBF₄ gave the rearranged species R₂C(SiMe₂Cl)(SiMe₂Y) (Y = OSO₂CF₃, OCIO₃, OCOCF₃, OSO₂C₆H₄Me-*p*, or F) (R = Me₃Si throughout). Correspondingly, TsiSiMelF reacted with AgSO₃CF₃ to give R₂C(SiMe₂F)(SiMe₂OSO₂CF₃) and with ICl to give R₂C(SiMe₂F)(SiMe₂Cl); TsiSiMelBr likewise gave R₂C(SiMe₂Br)(SiMe₂OSO₂CF₃) on treatment with AgSO₃CF₃ but the di-iodide TsiSiMel₂ reacted even with 1 molar equiv. of various silver salts to give R₂C(SiMe₂Y)₂ (Y = F, OCIO₃, OSO₂CF₃, or OSO₂C₂H₄Me-*p*) along with unchanged TsiSiMel₂. The iodo-hydride TsiSiMeHI gave only unrearranged TsiSiMeHF when treated with AgBF₄ in Et₂O, but a mixture of R₂C(SiMe₂Y) species were made as follows; (i) with X = H; Y = Cl, Br, or l, along with R₂C(SiMe₂X)₂, from R₂C(SiMe₂H)₂ with 1 molar equiv. of X₂; (ii) R₂C(SiMe₂F)(SiMe₂H) and I₂; (iv) with X = OMe, Y = Cl, from R₂C(Cl)(SiMe₂OMe) [*via* R₂C(Li)(SiMe₂OMe)] and Me₂SiCl₂. The methanolyses of several R₂C(SiMe₂X)(SiMe₂X)(SiMe₂X)(SiMe₂X) (SiMe₂X) (SiMe

discussed in terms of anchimeric assistance by the X or Y groups.


Much interesting chemistry has emerged from studies of compounds of the type TsiSiRR'X [Tsi = $(Me_3Si)_3C$].¹⁻⁸ This paper is concerned with the preparation and reactions of some related compounds, especially those of the type $(Me_3Si)_2C$ - $(SiMe_2X)(SiMe_2Y)$, where X and Y are identical or different functional groups.

The starting points for much of the work were the known compounds TsiSiMeHCl and TsiSiMeICl.7 Treatment of TsiSiMeICl with AgOSO₂CF₃ in CH₂Cl₂ gave exclusively the rearranged species $R_2C(SiMe_2Cl)(SiMe_2OSO_2CF_3)$ (R = Me₃Si); this result is consistent with the previously reported formation of the rearranged dichloride $R_2C(SiMe_2Cl)_2$ on treatment of TsiSiMeICl with ICl,³ and the reactions presumably proceed via Me-bridged cations of type (1) ($\mathbf{R}' = \mathbf{M}\mathbf{e}$, R'' = Cl). The R₂C(SiMe₂Cl)(SiMe₂OSO₂CF₃) reacts very readily with MeOH to give the dimethoxide $R_2C(SiMe_2OMe)_2$, and with water in acetone to give the dihydroxide R_2C -(SiMe₂OH)₂. Since TsiSiMe₂Cl does not react with MeOH or aqueous acetone even on prolonged reflux, it seems that the $R_2C(SiMe_2Cl)(SiMe_2OSO_2CF_3)$ first forms $R_2C(SiMe_2Cl)$ - $(SiMe_2OZ)$ (Z = Me or H) (with assistance by the Cl to leaving of the OSO₂CF₃ group), and that the Si-Cl bond is then activated by the powerful anchimeric assistance from the γ -OZ group (see Scheme 1).^{5,6}

Several other $R_2C(SiMe_2Cl)(SiMe_2X)$ compounds, namely those with X = F, OClO₃, OCOCF₃, or OSO₂Ph, were made analogously from the appropriate silver salt (AgBF₄ in the case of X = F).

The fluoro-iodide TsiSiMeIF (see later) reacted analogously with AgOSO₂CF₃ to give $R_2C(SiMe_2F)(SiMe_2OSO_2CF_3)$, with AgBF₄ to give $R_2C(SiMe_2F)_2$, and with ICl to give $R_2C(SiMe_2F)(SiMe_2Cl)$. The bromo-iodide TsiSiMeIBr (see later) likewise gave $R_2C(SiMe_2Br)(SiMe_2OSO_2CF_3)$ on treatment with AgOSO₂CF₃. The reactions of the di-iodide TsiSiMeI₂ are considered later.

When TsiSiMeHI was treated with AgBF₄ in Et₂O the unrearranged fluoride TsiSiMeHF was exclusively formed; this could be understood in terms of the much lower steric hindrance to nucleophilic attack at Si(1) in the intermediate (1) (R' = Me, R'' = H). Surprisingly, however, the corresponding reaction in CH₂Cl₂ gave a mixture of rearranged and unrearranged

TsiSiMeICl + AgOSO₂CF₃ \longrightarrow R₂C(SiMe₂Cl)(SiMe₂OSO₂CF₃) \downarrow ZOH R₂C(SiMe₂OZ), $\stackrel{ZOH}{\leftarrow}$ R₂C(SiMe₂Cl)(SiMe₂OZ)

Scheme 1. Z = Me or H

fluorides, $R_2C(SiMe_2H)(SiMe_2F)$ (50%) and TsiSiMeHF (20%), along with the difluoride $R_2C(SiMe_2F)_2$ (30%). Since the difluoride can be assumed to have been formed from the rearranged species $R_2C(SiMe_2H)(SiMe_2F)$, with anchimeric assistance from the γ -F activating the Si–H bond towards reaction with the AgBF₄, roughly four times as much rearranged as unrearranged monofluoride must have been formed initially. It is possible that the differing behaviour in the two solvents is associated in some way with the fact that ether may (by giving BF₃·OEt₂) assist the liberation of BF₃ which occurs on formation of the Si–F bond; *e.g.* with Et₂O present the BF₄⁻ may lose F⁻ to Si(1) before it can diffuse away from the neighbourhood of the initial reaction site.

The TsiSiMeHF, made as described above, gave TsiSiMeIF on treatment with ICl in CCl₄, and TsiSiMeHBr (made by reaction of TsiSiMeH₂ with one molar equiv. of Br_2) likewise gave TsiSiMeIBr.

Treatment of TsiSiMeH₂ with 2 molar equiv. of ICl gave the di-iodide TsiSiMeI₂; it seems that the TsiSiMeHI initially formed reacts preferentially at the Si-H bond (to give another Si-I bond) rather than at the Si-I bond to give an Si-Cl bond, even though the presence of one halogen on an SiH centre normally reduces markedly the ease of iodination.⁸ It was hoped that treatment of TsiSiMeI₂ with 1 equiv. of a silver salt, AgY (actually $AgBF_4$ for introduction of F), would give compounds of the type $R_2C(SiMe_2I)(SiMe_2Y)$ (compare the reactions of TsiSiMeCII), but instead a mixture of R₂C- $(SiMe_2Y)_2$ (Y = F, OClO₃, OSO₂C₆H₄Me-p, or OSO₂CF₃) and unchanged TsiSiMeI₂ was obtained. This indicates that when one Y group is introduced, to give $R_2C(SiMe_2I)(SiMe_2Y)$, the anchimeric assistance by the γ -Y group markedly activates the remaining Si-I bond towards reaction with the residual AgY. As expected, when an excess of AgY was used the R_2C - $(SiMe_2Y)_2$ compounds with Y = F (from AgBF₄), OClO₃, OSO_2Ph , or OSO_2CF_3 were obtained in good yields. The compound $R_2C(SiMe_2I)(SiMe_2F)$ was made, but by

The compound $R_2C(SiMe_2I)(SiMe_2F)$ was made, but by a different route, which involved use of the mixture of $R_2C(SiMe_2H)(SiMe_2I)$, $R_2C(SiMe_2I)_2$, and $R_2C(SiMe_2H)_2$ obtained by treatment of this last compound with iodine (see later). The mixture reacted with AgBF₄ to give a mixture of $R_2C(SiMe_2H)(SiMe_2F)$, $R_2C(SiMe_2F)_2$, and $R_2C(SiMe_2H)_2$, from which $R_2C(SiMe_2H)(SiMe_2F)$ was isolated by t.l.c. Treatment of this product with 1 molar equiv. of ICl gave $R_2C(SiMe_2I)(SiMe_2F)$.

A starting point for several R₂C(SiMe₂X)(SiMe₂Y) species was the dihydride $R_2C(SiMe_2H)_2$, which was made by reduction of $R_2C(SiMe_2Cl)_2^3$ with LiAlH₄. Treatment of R_2C - $(SiMe_2H)_2$ with 1 equiv. of I₂ in CCl₄ gave a mixture of $R_2C(SiMe_2H)(SiMe_2I)$, $R_2C(SiMe_2I)_2$, and unchanged R_2C - $(SiMe_2H)_2$, and the monoiodide was isolated by t.l.c. Treatment of a similar product mixture with boiling MeOH for 1 h [after which no $R_2C(SiMe_2H)(SiMe_2I)$ remained] did not give any R₂C(SiMe₂H)(SiMe₂OMe); the major product was R₂C- $(SiMe_2OMe)_2$. The amount of the latter produced, and the rate at which it was formed, showed that it could not all have come from $R_2C(SiMe_2I)_2$, and it seems that a substantial amount of it must have come from the $R_2C(SiMe_2H)(SiMe_2OMe)$ initially formed from R₂C(SiMe₂H)(SiMe₂I), the combination of anchimeric assistance by the γ -OMe group and catalysis by the HI present resulting in fairly ready methanolysis of the Si-H bond.

Treatment of $R_2C(SiMe_2H)_2$ with 2 molar equiv. of the appropriate halogen, X_2 , gave the dihalides $R_2C(SiMe_2X)_2$ (X = Cl, Br, or I). An attempt to make the chloro-iodide by treatment of $R_2C(SiMe_2I)(SiMe_2H)$ with 1 molar equiv. of Cl₂ was unsuccessful, $R_2C(SiMe_2Cl)_2$ being formed along with unchanged $R_2C(SiMe_2I)(SiMe_2H)$. [Treatment of R_2C -(SiMe_2I)(SiMe_2H) with Br₂ gave analogous results.] It seems that once $R_2C(SiMe_2I)(SiMe_2Cl)$ is formed, attack of Cl₂ at the Si–I bond, anchimerically assisted by the γ -Cl ligand,⁵ is faster than that at the Si–H bond in the starting material, the reaction being analogous to that of silicon iodides with ICl to give silicon chlorides.⁸ The chloro-iodide $R_2C(SiMe_2I)(SiMe_2Cl)$ was, however, obtained by reaction of I₂ with the chloro-hydride $R_2C(SiMe_2H)(SiMe_2Cl)$ (see Scheme 2); the latter was formed in 55% yield along with 5% of $R_2C(SiMe_2Cl)_2$ and unchanged $R_2C(SiMe_2H)_2$ when this dihydride was treated with Cl_2 in CCl_4 under conditions aimed at maximizing mono- relative to di-chlorination (see Experimental section), and the product mixture was separated by t.l.c. The bromo-iodo-compound $R_2C(SiMe_2I)(SiMe_2Br)$ was made analogously (Scheme 2).

The iodo-fluoro-compound $R_2C(SiMe_2I)(SiMe_2F)$ was obtained by a different route (Scheme 3); the required compound was separated by t.l.c. from the diffuoride $R_2C(SiMe_2F)_2$ and unchanged $R_2C(SiMe_2H)_2$.

The methoxy-chloride $R_2C(SiMe_2OMe)(SiMe_2Cl)$ was made via $R_2C(SiMe_2OMe)Cl$, and hence $R_2C(SiMe_2OMe)Li$ (cf. ref. 9), as shown in Scheme 4.

The compound $R_2C(SiMe_2OMe)(SiMe_2Cl)$ was also made on one occasion by metallation of $R_2CH(SiMe_2OMe)$ with MeLi in Et₂O-tetrahydrofuran followed by treatment with Me₂SiCl₂. This result could not be reproduced, however, the only product isolated in all subsequent attempts being TsiSiMe₂Cl, apparently formed by initial replacement of the OMe group of $R_2CH(SiMe_2OMe)$ by Me to give TsiH, which then underwent metallation in the usual way.

The bromide $R_2C(SiMe_2Br)Cl$ was also treated with (a) $AgBF_4$ to give the fluoride $R_2C(SiMe_2F)Cl$, and (b) Et_2NH and Bu^tOH (both dried by standard methods, but evidently containing some water) to give the hydroxide $R_2C(SiMe_2OH)Cl$. The dichloride $R_2C(SiMe_2Cl)Cl$ was obtained by treatment of $R_2C(SiMe_2H)Cl$ with Cl_2 in CCl_4 .

The compounds $R_2C(SiMe_2Y)_2$ with $Y = OClO_3$ or OSO_2CF_3 react with MeOH very readily, and those with X = I or OSO_2Ph less readily to give the dimethoxide R_2C - $(SiMe_2OMe)_2$.⁵ The compounds $R_2C(SiMe_2Cl)(SiMe_2Y)$, with $Y = OClO_3$, ONO_2 , $OCOCF_3$, or OSO_2CF_3 , and also R_2C - $(SiMe_2Br)(SiMe_2OSO_2CF_3)$, also react with MeOH, at various rates, to give $R_2C(SiMe_2OMe)_2$.⁵ (Details of rate studies on these reactions will be presented in a later paper.) The dichloride $R_2C(SiMe_2Cl)_2$ did not react at a detectable rate with boiling MeOH [though it slowly gave $R_2C(SiMe_2OMe)_2$ on treatment with AgNO_3 in refluxing MeOH], but the chloro-fluoride $R_2C(SiMe_2Cl)(SiMe_2F)$ did react during 100 h under these

$$\begin{array}{c} R_2C(SiMe_2H)_2 \xrightarrow{X_2} R_2C(SiMe_2H)(SiMe_2X) + R_2C(SiMe_2X)_2 \\ \downarrow 1_2 \\ R_2C(SiMe_2I)(SiMe_2X) \end{array}$$

Scheme 2. X = Cl or Br

$$\begin{array}{ccc} R_2C(SiMe_2H)_2 & \stackrel{l_2}{\longrightarrow} R_2C(SiMe_2H)(SiMe_2I) + R_2C(SiMe_2I)_2 \\ & & \downarrow & & \\ & & & & \\ R_2C(SiMe_2H)(SiMe_2F) + R_2C(SiMe_2F)_2 \\ & & & \downarrow & \\ & & & \\ R_2C(SiMe_2I)(SiMe_2F) \end{array}$$

Scheme 3.

$$\begin{array}{c} R_{2}CCl_{2} \xrightarrow{BuLi} R_{2}C(Cl)Li \xrightarrow{Me_{2}SiHCl}} R_{2}C(Cl)(SiMe_{2}H) \\ & \downarrow Br_{2} \\ R_{2}C(Cl)(SiMe_{2}Br) \\ & \downarrow MeOH \\ \end{array}$$

$$R_{2}C(SiMe_{2}OMe)(SiMe_{2}Cl) \xleftarrow{Me_{2}SiCl_{2}}} R_{2}C(Li)(SiMe_{2}OMe) \xleftarrow{BuLi} R_{2}C(Cl)(SiMe_{2}OMe) \end{array}$$

Scheme 4.

conditions, indicating that a γ -F provides more anchimeric assistance than a γ -Cl ligand. The products were shown to be $R_2C(SiMe_2OMe)_2$, $R_2C(SiMe_2OMe)(SiMe_2F)$, and R_2C - $(SiMe_2F)_2$, in ca. 60:20:20 ratio. The formation of the difluoride was very surprising; we tentatively attribute it to attack of liberated fluoride ion on unchanged R₂C(SiMe₂Cl)- $(SiMe_2F)$, but the fact that the concentration of F⁻ must be very low under the acidic conditions (caused by generation of HCl) argues against this. Reaction of the chloro-fluoride R₂C-(SiMe₂Cl)(SiMe₂F) with MeOH containing 0.5% of H₂O gave the hydroxy-fluoride $R_2C(SiMe_2OH)(SiMe_2F)$ (70%), the dimethoxide $R_2C(SiMe_2OMe)_2$ (10%), and the diffuoride $R_2C(SiMe_2F)_2$ (20%); there was no detectable amount of $R_2C(SiMe_2OH)(SiMe_2OMe)$, $R_2C(SiMe_2OH)_2$, or R_2C -(SiMe₂OMe)(SiMe₂F). The predominant formation of the hydroxy-fluoride indicates that (a) the $R_2C(SiMe_2Cl)(SiMe_2F)$ reacts fairly selectively with the small amount of water present, and (b) the γ -OH group apparently provides less anchimeric assistance than the γ -OMe group, so that after the first step loss of the fluoride ligand is slower than it is for the reaction in anhydrous MeOH.

Experimental

Spectra.—The ¹H n.m.r. spectra were recorded at 60 or 90 MHz for solutions in CCl₄ containing CHCl₃ or CH₂Cl₂ as lock and reference. The ¹⁹F n.m.r. spectra were recorded with a Perkin-Elmer R32 spectrometer operating at 84.6 MHz; the solutions were in CCl₄, containing CFCl₃ as internal standard, and chemical shifts are in p.p.m. relative to CFCl₃. The ²⁹Si n.m.r. spectra were recorded with a Bruker WP80 FT spectrometer at 15.92 MHz; solutions were in CHCl₃, with Me₄Si or (Me₃Si)₂O as external reference, and chemical shifts are in p.p.m. relative to Me₄Si. For all spectra, positive shifts are to low field.

The i.r. spectra were recorded using liquid films (for liquids) or Nujol mulls (for solids) between NaCl plates, with a Perkin-Elmer 157G grating spectrometer.

Mass spectra was recorded at 70 eV. For analysis by linked g.l.c.-mass spectrometry a column of 3% OV-101 on Chromosorb G (100-120 mesh) was used. Kieselgel GF₂₅₄ was used for t.l.c., with n-pentane as eluant.

Starting Materials.—The compounds $TsiSiMe_2I$, $TsiSiPh_2I$, TsiSiMeHCl, TsiSiMeICl, and $TsiSiH_3$ were prepared as described in ref. 7, $(Me_3Si)_2C(SiMe_2Cl)_2$ as in ref. 3, $R_2CH(SiMe_2OMe)$ as in ref. 10, and R_2CCl_2 (R denotes Me_3Si throughout) as in ref. 11.

Diethyl ether, n-pentane, and n-hexane were dried over Na wire; CCl_4 and CH_2Cl_2 were refluxed with $CaCl_2$ for 1 h then distilled off and stored over 4 A molecular sieve; tetrahydrofuran (THF) was refluxed with Na wire and benzophenone until a deep purple colour appeared, and was distilled from the mixture as required immediately before use; CH_3CN was refluxed over CaH_2 for 1 h then distilled off and stored over 4 A molecular sieve; MeOH was refluxed for some hours with Mg(OMe)₂, distilled off, and stored over 3 A molecular sieve.

Light petroleum refers to the fraction of b.p. 60-80 °C.

Reactions and Work-up.—Reactions were carried out at room temperature (ca. 21 °C) unless otherwise specified. Removal of solvent was performed under reduced pressure in all cases.

Preparations and Solvolysis of $R_2C(SiMe_2Cl)(SiMe_2X)$ (X = OSO_2CF_3 , $OSO_2C_6H_4Me$ -p, $OCIO_3$, $OCOCF_3$, or F).—(a) (i) A mixture of TsiSiMeICl (1.00 g, 2.3 mmol) and AgOSO_2CF_3 (0.71 g, 2.7 mmol) in CH₂Cl₂ was stirred for 30 min under reflux. Filtration and evaporation left a solid, which was sublimed

(90 °C at 0.2 Torr) to give (chlorodimethylsilyl)[dimethyl(trifluoromethylsulphonyloxy)silyl]bis(trimethylsilyl)methane (0.96 g, 91%), m.p. 202 °C (Found: C, 31.4; H, 6.7. $C_{12}H_{30}ClF_3O_3SSi_4$ requires C, 31.4; H, 6.6%); δ_H 0.35 (s, 18 H, SiMe₃), 0.69 (s, 6 H, SiMe₂Cl), and 0.79 (s, 6 H, SiMe₂OSO₂CF₃); δ_F - 77.0 (s). (ii) A solution of R₂C(SiMe₂Cl)(SiMe₂OSO₄CF₃) (0.19 g,

(ii) A solution of $R_2C(SiMe_2Cl)(SiMe_2OSO_4CF_3)$ (0.19 g, 0.41 mmol) in a mixture of CCl_4 (5 cm³) and MeOH (5 cm³) containing MeONa (0.41 mmol) was kept for 24 h. Removal of solvent and extraction of the residue with hexane, followed by evaporation of the extract, gave a solid, which was sublimed (75 °C at 0.1 Torr to give *bis(methoxydimethylsilyl)bis-(trimethylsilyl)methane* (0.091 g, 65%), m.p. 295 °C (Found: C, 46.7; H, 10.5. $C_{13}H_{36}O_2Si_4$ requires C, 46.4; H, 10.8%); δ_H 0.19 (s, 18 H, SiMe_3), 0.26 (s, 12 H, SiMe_2), and 3.40 (s, 6 H, OMe); m/z 321 ([M - Me]⁺), 305 ([M - OMe]⁺), 217 ([$M - Me - Me_3SiOMe$]⁺), 201 ([$M - OMe - Me_3SiOMe$]⁺), 89 ([MeO-Me_2Si]⁺), and 73 ([Me_3Si]⁺).

(iii) A solution of $R_2C(SiMe_2Cl)(SiMe_2OSO_2CF_3)$ (0.11 g, 0.24 mmol) in a mixture of acetone (8 cm³) and H_2O (2 cm³) was kept for 24 h, then evaporated. The residue was sublimed (80 °C at 0.2 Torr) to give *bis(hydroxydimethylsilyl)bis(trimethylsilyl)methane* (0.052 g, 71%), m.p. 197 °C (Found: C, 43.0; H, 10.4. $C_{11}H_{32}O_2Si_4$ requires C, 42.8; H, 10.5%); δ_H 0.28 (s, 18 H, SiMe₃), 0.34 (s, 12 H, SiMe₂), and 2.1 br (s, 2 H, OH); v(OH) 3 500—3 200 cm⁻¹.

(b) (i) A mixture of TsiSiMeICl (1.00 g, 2.3 mmol) and AgOSO₂C₆H₄Me-p (0.70 g, 2.5 mmol) in CH₂Cl₂ (20 cm³) was stirred for 90 h under reflux. Filtration and removal of solvent left an oil, which was taken up in boiling pentane. Cooling gave (chlorodimethylsilyl)(dimethyl-p-tolylsulphonyloxysilyl)bis(trimethylsilyl)methane (0.49 g, 45%), m.p. 136 °C (Found: C, 44.6; H, 7.5. C₁₈H₃₇ClO₃SSi₄ requires C, 44.9; H, 7.8%); $\delta_{\rm H}$ 0.24 (s, 18 H, SiMe₃), 0.58 (s, 6 H, SiMe₂Cl), 0.72 (s, 6 H, SiMe₂O), 2.46 (s, 3 H, ArMe), and 7.2—7.9 (m, 4 H, ArH)

(ii) A solution of $R_2C(SiMe_2Cl)(SiMe_2OSO_2C_6H_4Me_{-p})$ (0.10 g) in MeOH (5 cm³) was kept under reflux for 7 d. Removal of solvent left a solid, which was shown by ¹H n.m.r. spectroscopy to be exclusively $R_2C(SiMe_2OMe)_2$.

(c) (i) A mixture of TsiSiMeICl (1.03 g, 2.4 mmol) and AgClO₄ (1.00 g, 4.8 mmol) in CH₂Cl₂ (20 cm³) was stirred under reflux for 1 h. Filtration followed by evaporation gave a solid, which was sublimed (120 °C at 0.2 Torr) to give (chloro-dimethylsilyl)(perchloryloxydimethylsilyl)bis(trimethylsilyl)-methane (0.66 g, 68%), m.p. 254 °C (decomp.) (Found: C, 32.7; H, 7.09. C₁₁H₃₀Cl₂O₄Si₄ requires C, 32.3; H, 7.4%); $\delta_{\rm H}$ 0.41

H, 7.09. $C_{11}H_{30}C_{12}O_4S_4$ requires C, 52.5; H, 7.4%; $_{0}$; $_{0}H$ 0.41 (s, 18 H, SiMe₃), 0.75 (s, 6 H, SiMe₂Cl), and 0.85 (s, 6 H, SiMe₂OClO₃). (ii) A solution of R₂C(SiMe₂Cl)(SiMe₂OClO₃) (0.10 g) in

(ii) A solution of $R_2C(SiMe_2CI)(SiMe_2OCIO_3)$ (0.10 g) in MeOH (5 cm³) was kept for 2 h, then evaporated. The residue was shown (¹H n.m.r.) to be exclusively $R_2C(SiMe_2OMe)_2$.

(d) (i) A mixture of TsiSiMeICl (1.02 g, 2.3 mmol) and AgO₂CCF₃ (0.55 g, 2.5 mmol) in CH₂Cl₂ was stirred under reflux for 45 min. Filtration and evaporation, followed by sublimation (100 °C at 0.3 Torr) of the residue, gave (chloro-dimethylsilyl)(dimethyltrifluoroacetoxysilyl)bis(trimethylsilyl)-methane (0.81 g, 82%), m.p. 225 °C (Found: C, 37.1; H, 7.3. C₁₃H₃₀ClF₃O₂Si₄ requires C, 36.9; H, 7.2%); $\delta_{\rm H}$ 0.32 (s, 18 H, SiMe₃), 0.64 (s, 6 H, SiMe₂OCOCF₃), and 0.68 (s, 6 H, SiMe₂Cl); $\delta_{\rm F}$ -76.7 p.p.m. (s); v(C=O) 1 775 cm⁻¹.

(ii) A solution of $R_2C(SiMe_2Cl)(SiMe_2OCOCF_3)$ (0.10 g) in MeOH (5 cm³) was kept under reflux for 7 d. Removal of the solvent left exclusively $R_2C(SiMe_2OMe)_2$.

(e) A solution of $R_2C(SiMe_2Cl)(SiMe_2F)$ (0.14 g) in MeOH (10 cm³) was kept under reflux for 100 h. Removal of the solvent left a solid, which was shown by ¹H n.m.r. spectroscopy to be a mixture. T.l.c. gave two fractions, *viz.* (in order of increasing R_F) (i) $R_2C(SiMe_2OMe)_2$ (as shown by its ¹H n.m.r. spectrum), and (ii) a mixture, shown by g.l.c.-mass spectrometry to consist of

 $R_2C(SiMe_2F)_2$; m/z 297 ($[M - Me]^+$), and $R_2C(SiMe_2F)$ -(SiMe₂OMe), m/z 309 ($[M - Me]^+$), 217 ($[M - Me - Me_3-SiF]^+$), 205 ($[M - Me - Me_3SiOMe]^+$), and 201 ($[M - OMe - Me_3SiF]^+$). G.l.c. analysis (5% OV-101 at 200 °C) then showed the proportions of the three compounds in the initial product mixture to be (in the order of appearance above) 60:20:20.

(f) A solution of $R_2C(SiMe_2Cl)(SiMe_2F)$ (0.10 g, 0.03 mmol) in 0.5 vol% H₂O in MeOH was kept under reflux for 90 h. Removal of the solvent under vacuum left a solid. This was shown by g.l.c.-mass spectrometry to consist of three compounds: (i) $R_2C(SiMe_2F)_2$ (20%); (ii) $R_2C(SiMe_2OMe)_2$ (10%); and (iii) $R_2C(SiMe_2OH)(SiMe_2F)$ (70%), m/z 295 ([M -Me]⁺), 279 ([M - Me - MeH]⁺), 203 ([M - Me - Me₃-SiF]⁺), 187 ([M - Me - MeH - Me_3SiF]⁺), 77 ([FMe_2Si]⁺), 75 ([HOMe_2Si]⁺), and 73 ([Me_3Si]⁺). From the ¹H n.m.r. spectrum of the mixture, that of this last product could be seen to be δ_H 0.23 (s, 18 H, SiMe_3), 0.36 (s, 6 H, SiMe_2OH), 0.43 (d, 6 H, J 8 Hz, SiMe_2F), and 1.6 br (s, 1 H, OH).

Preparation and Reactions of TsiSiMeHF and TsiSiMeIF.— (a) A mixture of TsiSiMeHI (2.0 g, 5.0 mmol) and AgBF₄ (1.0 g, 5.1 mmol) in Et₂O (20 cm³) was stirred for 30 min at room temperature. Filtration followed by evaporation left a solid, which was recrystallized from EtOH to give [*fluoro(methyl)-silyl*]*tris(trimethylsilyl)methane* (1.1 g, 75%), m.p. > 320 °C (Found: C, 44.7; H, 10.4. C₁₁H₃₁FSi₄ requires C, 44.8; H, 10.6%); δ_{H} 0.27 (s, 27 H, SiMe₃), 0.51 (dd, 3 H, J 8 Hz, SiMe), and 5.08 (dq, 1 H, SiH); δ_{F} - 162 p.p.m. (dq, J 51 and 8 Hz, SiF); $\delta_{Si-\{^{1}H_{3}\}}$ - 1.62 (d, J 4 Hz, SiMe₃) and 13.07 p.p.m. (d, J 290 Hz, SiMeHF); *m/z* 279 ([*M* - Me]⁺), 205 ([*M* - Me - Me₃SiF]⁺), 187 ([*M* - Me - Me₃SiF]⁺), and 73 ([Me₃Si]⁺); v(SiH) 2 150 cm⁻¹.

(b) A mixture of TsiSiMeHI (1.83 g, 4.6 mmol) and AgBF₄ (1.95 g, 10 mmol) in CH₂Cl₂ was stirred at room temperature for 18 h. Filtration and removal of solvent left a solid, which was taken up in n-pentane. The solution was filtered and evaporated to leave a solid, shown by ¹H n.m.r. spectroscopy to be a mixture. Preparative g.l.c. $(20\% PEGA at 160 \degree C)$ gave, in order of elution, (i) TsiSiMeHF; (ii) (Me₃Si)₂C(SiMe₂F)(SiMe₂H); and (iii) (Me₃Si)₂C(SiMe₂F)₂. The proportions of these components were shown by analytical g.l.c. to be 20:50:30.

(c) A 1M-solution of ICl in CCl₄ (3.0 cm³; 3.0 mmol of ICl) was added dropwise at room temperature to a stirred solution of TsiSiMeHF (0.88 g, 3.0 mmol) in CCl₄ (10 cm³). Removal of solvent left a solid, which was sublimed (100 °C at 0.1 Torr) to give a solid, m.p. > 320 °C, judged from its n.m.r. spectra to be [fluoro(iodo)(methyl)silyl]tris(trimethylsilyl)methane (0.98 g, 78%); $\delta_{\rm H}$ 0.33 (s, 27 H, SiMe₃) and 1.13 (d, 3 H, J 8 Hz, SiMe); $\delta_{\rm F}$ 116.3 (q, J 8 Hz, SiF).

(d) A 1m-solution of ICl in CCl₄ (0.30 cm³; 0.30 mmol of ICl) was added dropwise with stirring at room temperature to a solution of TsiSiMeFI (0.10 g, 0.24 mmol) in CCl₄ (5 cm³). Removal of solvent and residual iodine left a solid, shown by its ¹H n.m.r. spectrum to be exclusively $R_2C(SiMe_2F)(SiMe_2Cl)$.

(e) A mixture of TsiSiMeFI (0.10 g, $\bar{0.24}$ mmol) and AgBF₄ (0.060 g, 0.31 mmol) in CH₂Cl₂ (5 cm³) was stirred at room temperature for 30 min. Filtration followed by removal of solvent left a solid, shown by its ¹H n.m.r. spectrum to be R₂C(SiMe₂F)₂.

(f) A mixture of TsiSiMeFI (0.060 g; 0.14 mmol) and AgOSO₂CF₃ (0.040 g, 0.16 mmol) in CH₂Cl₂ was stirred at room temperature for 20 min. Filtration followed by removal of solvent left a solid, judged from its n.m.r. spectra to be exclusively (fluorodimethylsilyl)[dimethyl(trifluoromethylsulphonyloxy)silyl]bis(trimethylsilyl)[dimethane; $\delta_{\rm H}$ 0.32 (s, 18 H, SiMe₃), 0.49 (d, 6 H, J 8 Hz, SiMe₂F), and 0.75 (s, 6 H, SiMe₂O); $\delta_{\rm F}$ -145.6 (m, SiF) and -77.6 (s, CF₃).

Preparation and Reactions of TsiSiMeIBr.—(a) A 1M-solution of Br₂ in CCl₄ (7.2 cm³; 7.2 mmol) was added dropwise to a stirred solution of TsiSiMeH₂ (2.0 g, 7.2 mmol) in CCl₄ (10 cm³). Removal of the solvent left a solid, judged from its ¹H n.m.r. spectrum [δ_{H} 0.28 (s, 27 H, SiMe₃), 0.85 (d, 3 H, J 3 Hz, SiMe), and 4.88 (q, 1 H, J 3 Hz, SiH)] to be TsiSiMeHBr. This was dissolved in CCl₄ (10 cm³), and a 1M-solution of ICl in CCl₄ (7.2 cm³; 7.2 mmol of ICl) was added. The solvent was removed to leave a solid, which was recrystallized from EtOH to give [*bromo(iodo)(methyl)silyI]tris(trimethylsilyI)methane* (3.20 g, 92%), m.p. > 320 °C (Found: C, 27.2; H, 6.5. C₁₁H₃₀BrISi₄ requires C, 27.4; H, 6.3%); δ_{H} 0.44 (s, 27 H, SiMe₃) and 1.61 (s, 3 H, SiMe).

(b) A mixture of TsiSiMeBrI (0.72 g; 1.5 mmol), prepared as under (a), and AgOSO₂CF₃ (0.40 g, 1.6 mmol) in CH₂Cl₂ (10 cm³) was stirred at room temperature for 15 min. Filtration and removal of solvent gave a solid, which was sublimed (120 °C at 0.5 Torr) to give (bromodimethylsilyl)[dimethyl(trifluoromethylsulphonyloxy)silyl]bis(trimethylsilyl)[methane (0.62 g, 82%), m.p. 159 °C (Found: C, 29.2; H, 6.0. C₁₂H₃₀BrF₃O₃SSi₄ requires C, 28.6; H, 6.0%); $\delta_{\rm H}$ 0.41 (s, 18 H, SiMe₃), 0.86 (s, 6 H, SiMe₂OSO₂CF₃), and 0.90 (s, 6 H, SiMe₂Br); $\delta_{\rm F}$ -77.4 (s).

Solvolysis of $R_2C(SiMe_2Br)(SiMe_2OSO_2CF_3)$.—(a) A solution of $R_2C(SiMe_2Br)(SiMe_2OSO_2CF_3)$ (0.10 g, 0.20 mmol) in MeOH (5 cm³) was kept at room temperature for 24 h then diluted with H_2O (5 cm³). Extraction with light petroleum followed by washing, drying (MgSO₄), and evaporation of the extract left a solid, shown by its ¹H n.m.r. spectrum to be exclusively $R_2C(SiMe_2OMe)_2$.

(b) A solution of $R_2C(SiMe_2Br)(SiMe_2OSO_2CF_3)$ (0.10 g, 0.20 mmol) in 20 vol% H₂O in acetone (5 cm³) was stirred at room temperature for 24 h. Evaporation left a solid, shown by its ¹H n.m.r. spectrum to be exclusively $R_2C(SiMe_2OH)_2$.

Preparation and Reaction of TsiSiMeI₂.—(a) A solution of ICl (37 mmol) in CCl₄ (50 cm³) was added dropwise to a stirred solution of TsiSiMeH₂ (5.0 g, 18 mmol) in CCl₄ (15 cm³) at room temperature. Removal of the solvent left a solid, which was recrystallized from EtOH, then sublimed (140 °C at 0.1 Torr) to give a solid, (6.1 g, 64%), m.p. > 320 °C, judged to be TsiSiMeI₂; $\delta_{\rm H}$ 0.45 (s, 27 H, SiMe₃) and 1.90 (s, 3 H, SiMe).

(b) A mixture of TsiSiMeI₂ (0.10 g, 0.19 mmol) and AgBF₄ (0.040 g, 0.21 mol) in CH₂Cl₂ (5 cm³) was stirred at room temperature for 30 min. Filtration and removal of solvent left a solid, shown from its ¹H n.m.r. structure to be a mixture of starting material (45%) and R₂C(SiMe₂F)₂ (55%).

(c) A mixture of TsiSiMeI₂ (0.50 g, 0.95 mmol) and AgBF₄ (0.40 g, 2.1 mmol) in CH₂Cl₂ (10 cm³) was stirred at room temperature for 30 min. Filtration and removal of the solvent left a solid, which was sublimed (80 °C at 0.2 Torr) to give bis(fluorodimethylsilyl)bis(trimethylsilyl)methane (0.21 g, 71%) (Found: C, 42.3; H, 9.5. C₁₁H₃₀F₂Si₄ requires C, 42.2; H, 9.7%); $\delta_{\rm H}$ 0.28 (s, 18 H, SiMe₃) and 0.43 (d, 12 H, J 8 Hz, SiMe₂); $\delta_{\rm F}$ -146.0 (m, J 8 Hz, SiF).

(d) A mixture of TsiSiMeI₂ (0.090 g, 0.17 mmol) and AgClO₄ (0.035 g, 0.17 mmol) in CH₂Cl₂ was stirred at room temperature for 2 h. Filtration and evaporation left a solid, shown from its ¹H n.m.r. spectrum to be a 1:1 mixture of unchanged TsiSiMeI₂ with R₂C(SiMe₂OClO₃)₂.

(e) A mixture of TsiSiMeI₂ (0.45 g, 0.85 mmol) and AgClO₄ (0.36 g, 1.70 mmol) in CH₂Cl₂ (10 cm³) was stirred at room temperature for 3 h. Filtration and evaporation under vacuum left a solid, which was recrystallized twice from n-pentane to give *bis[dimethyl(perchloryloxy)silyl]bis(trimethylsilyl)methane* (0.24 g, 60%) (Found: C, 28.1; H, 6.6. C₁₁H₃₀Cl₂O₈Si₄ requires C, 27.9; H, 6.4%); $\delta_{\rm H}$ 0.36 (s, 18 H, SiMe₃) and 0.80 (s, 12 H, SiMe₂).

(f) A mixture of TsiSiMeI₂ (0.10 g, 0.19 mmol) and AgOSO₂CF₃ (0.050 g, 0.19 mmol) in CH₂Cl₂ (5 cm³) was stirred at room temperature for 20 min. Filtration and evaporation left a solid, shown by its ¹H n.m.r. spectrum to be a 1:1 mixture of unchanged TsiSiMeI₂ with R₂C(SiMe₂OSO₂CF₃)₂.

(g) A mixture of TsiSiMeI₂ (0.62 g, 1.20 mmol) and AgOSO₂-C₆H₄Me-p (0.70 g, 2.5 mmol) in CH₂Cl₂ (10 cm³) was stirred under reflux for 65 h. Filtration and evaporation left a solid, which was recrystallized from MeOH to give *bis(dimethyl-ptolylsulphonyloxysilyl)bis(trimethylsilyl)methane* (0.44 g, 60%), m.p. 175 °C (Found: C, 47.8; H, 6.9. C₂₅H₄₄O₆S₂Si₄ requires C, 48.7; H, 7.2%); $\delta_{\rm H}$ 0.09 (s, 18 H, SiMe₃), 0.51 (s, 12 H, SiMe₂), 2.40 (s, 6 H, ArMe), and 7.3–7.9 (m, 8 H, ArH).

(h) A procedure similar to that described under (f), but starting from TsiSiMeI₂ (0.19 mmol) and AgOSO₂CF₃ (0.19 mmol), gave a 1:1 mixture of TsiSiMeI₂ and R₂C(SiMe₂O-SO₂CF₃)₂.

(i) A mixture of TsiSiMeI₂ (0.76 g, 1.40 mmol) and AgOSO₂CF₃ (0.80 g, 3.1 mmol) in CH₂Cl₂ was stirred at room temperature for 10 min. Filtration and evaporation left an oil, which was taken up in n-pentane. The solution was filtered and evaporated to leave an oil, which solidified. Sublimation (100 °C at 0.1 Torr) gave a solid, which was judged to be bis[dimethyl-(trifluoromethylsulphonyloxy)silyl]bis(trimethylsilyl)methane (0.38 g, 46%); $\delta_{\rm H}$ 0.35 (s, 18 H, SiMe₃) and 0.76 (s, 12 H, SiMe₂).

Preparation of TsiSiMeHX Compounds (X = H, I, or OMe).—(a) A refluxing mixture of TsiSiMeHCl (4.92 g, 0.016 mol) and LiAlH₄ (5.0 g, 0.13 mol) in THF (60 cm³) was stirred under nitrogen for 1 h. Careful treatment with saturated aqueous NH₄Cl was followed by extraction with light petroleum. The extract was washed, dried (MgSO₄), and evaporated, to leave a solid, which was sublimed (80 °C at 0.2 Torr) to give (methylsilyl)tris(trimethylsilyl)methane (3.0 g, 69%), m.p. 255 °C (Found: C, 47.7; H, 11.6. C₁₁H₃₂Si₄ requires C, 47.7; H, 11.6%); $\delta_{\rm H}$ 0.17 (s, 27 H, SiMe₃), 0.28 (t, 3 H, SiMe), and 3.90 (q, 2 H, SiH₂); $\delta_{\rm Si}$ -4.41 (s, SiMe₃) and -36.5 (t, J 191 Hz, SiMeH₂); v(SiH) 2 130 cm⁻¹.

(b) A solution of TsiSiMeH₂ (2.00 g, 7.2 mmol) and I₂ (3.00 g, 12 mmol) in n-heptane (5 cm³) was boiled under reflux for 18 h under a stream of N₂. Removal of solvent and residual I₂ under vacuum gave a solid, which was sublimed (90 °C at 0.2 Torr) to give [*iodo(methyl)silyI*]tris(trimethylsilyI)methane (2.7 g, 92%), m.p. > 320 °C (Found: C, 32.8; H, 7.8. C₁₁H₃₁ISi₄ requires C, 32.8; H, 7.8%); $\delta_{\rm H}$ 0.31 (s, 27 H, SiMe₃), 1.14 (d, 3 H, SiMe), and 4.80 (q, 1 H, SiH); $\delta_{\rm si}$ 0.18 (s, SiMe₃) and -21.8 (d, J 232 Hz, SiMeHI); v(SiH) 2 150 cm⁻¹.

(c) A solution of TsiSiMeHI (1.57 g) in a mixture of CCl₄ (10 cm³) and MeOH (10 cm³) was boiled under reflux for 30 min. Evaporation gave a solid, which was sublimed (100 °C at 0.2 Torr) to give [methoxy(methyl)silyl]tris(trimethylsilyl)methane (1.06 g, 89%) (Found: C, 46.2; H, 11.1. $C_{12}H_{34}OSi_4$ requires C, 47.0; H, 11.2%); δ_H 0.18 (s, 27 H, SiMe₃), 0.34 (d, 3 H, SiMe), 3.38 (s, 3 H, OMe), and 4.67 (q, 1 H, SiH); v(SiH) 2 100 cm⁻¹.

Preparation of $R_2C(SiMe_2H)_2$ and its Reactions with Halogens and Chlorinating Agents.—(a) A mixture of R_2C -(SiMe_2Cl)₂ (9.8 g, 0.028 mol) and LiAlH₄ (8.0 g, 0.21 mol) in refluxing THF (100 cm³) was stirred under N₂ for 3 h, then carefully treated with saturated aqueous NH₄Cl (250 cm³) and extracted with light petroleum (2 × 200 cm³). The extract was washed, dried (MgSO₄), and evaporated to give a solid, which was recrystallized from EtOH to give bis(dimethylsilyl)bis-(trimethylsilyl)methane (6.3 g, 80%), m.p. 286 °C (Found: C, 47.6; H, 11.9. C₁₁H₃₂Si₄ requires C, 47.7; H, 11.7%); δ_H 0.16 (s, 18 H, SiMe₃), 0.24 (d, 12 H, J 4 Hz, SiMe₂), and 4.11 (m, 2 H, J 4 Hz, SiH); $\delta_{si} = 0.46$ (s, SiMe₃) and - 16.4 (d, J 193 Hz, SiMe₂H); v(SiH) 2 110 cm⁻¹.

(b) A solution of Cl₂ (2.50 mmol) in CCl₄ (3 cm³) was added

dropwise to a stirred solution of $R_2C(SiMe_2H)_2$ (0.30 g, 1.10 mmol) in CCl₄ (10 cm³). Removal of the solvent left a solid, which was sublimed (100 °C at 0.1 Torr) to give $R_2C(SiMe_2Cl)_2$ (0.33 g, 88%), m.p. > 320 °C (Found: C, 38.7; H, 8.3. Calc. for $C_{11}H_{30}Cl_2Si_4$: C, 38.2; H, 8.8%); δ_H 0.38 (s, 18 H, SiMe₃) and 0.70 (s, 12 H, SiMe₂Cl). The properties are consistent with those previously reported.³

(c) A similar procedure, but starting with $R_2C(SiMe_2H)_2$ (0.84 mmol) and 1.0M-Br₂ (1.8 mmol) in CCl₄ (10 cm³) and culminating in sublimation (120 °C at 0.1 Torr), gave bis(bromodimethylsilyl)bis(trimethylsilyl)methane (0.31 g, 82%), m.p. > 320 °C (Found: C, 30.8; H, 7.1. C₁₁H₃₀Br₂Si₄ requires C, 30.4; H, 7.0%); δ_H 0.42 (s, 18 H, SiMe₃) and 0.89 (s, 12 H, SiMe₂).

(d) A mixture of $R_2C(SiMe_2H)_2$ (0.50 g, 1.8 mmol) and I_2 (1.00 g, 3.9 mmol) in CCl_4 (20 cm³) was stirred at room temperature for 18 h. Removal of solvent and residual I_2 under vacuum left a solid, which was subjected to t.l.c. The main fraction was evaporated, and the residual solid sublimed (100 °C at 0.2 Torr) to give *bis(iododimethylsilyl)bis(trimethylsilyl)methane*, (0.81 g, 83%), m.p. > 320 °C (Found: C, 25.1; H, 5.6. $C_{11}H_{30}I_2Si_4$ requires C, 25.0; H, 5.7%); δ_H 0.48 (s, 18 H, SiMe₃) and 1.23 (s, 12 H, SiMe₂).

(e) A solution of Cl₂ (0.84 mmol) in CCl₄ (50 cm³) was added dropwise at room temperature to a stirred solution of R₂C-(SiMe₂H)₂ (0.30 g, 1.1 mmol) in CCl₄ (5 cm³). Evaporation left a solid, shown by ¹H spectroscopy to be a mixture of R₂C-(SiMe₂H)₂ (40%), R₂C(SiMe₂Cl)(SiMe₂H) (55%), and R₂C-(SiMe₂Cl)₂ (5%). T.l.c. gave (chlorodimethylsilyl)(dimethylsilyl)bis(trimethylsilyl)methane (0.12 g, 36%), m.p. 252 °C (Found: C, 42.1; H, 10.0. C₁₁H₃₁ClSi₄ requires C, 42.5; H, 10.1%); $\delta_{\rm H}$ 0.28 (s, 18 H, SiMe₃), 0.36 (d, 6 H, J 4 Hz, SiMe₂H), 0.61 (s, 6 H, SiMe₂Cl), and 4.16 (m, 1 H, SiH); v(SiH) 2 110 cm⁻¹.

(f) A mixture of $R_2C(SiMe_2H)_2$ (0.18 g, 0.65 mmol) and PCl₅ (0.13 g, 0.60 mmol) in CCl₄ (10 cm³) was stirred at room temperature for 13 h. Evaporation left a solid, shown by ¹H n.m.r. spectroscopy to contain $R_2C(SiMe_2H)_2$, $R_2C(SiMe_2Cl)$ -(SiMe₂H), and $R_2C(SiMe_2Cl)_2$ in 30:40:30 ratio.

(g) A mixture of $R_2C(SiMe_2H)_2$ (0.20 g, 0.71 mmol) and Nchlorosuccinimide (0.10 g, 0.73 mmol) in CCl_4 (10 cm³) containing a catalytic amount of (PhCOO)₂ was refluxed with stirring for 5 h. Filtration and evaporation of the filtrate gave a solid, shown (¹H n.m.r.) to contain the same products as in (f) in 25:50:25 ratio.

(h) A solution of Br₂ (1.60 mmol) in CCl₄ (30 cm³) was added dropwise with stirring to a solution of R₂C(SiMe₂H)₂ (0.50 g, 1.8 mmol) in CCl₄ (5 cm³) at room temperature. Evaporation left a solid, shown (¹H n.m.r.) to be a mixture of R₂C(SiMe₂H)₂, R₂(SiMe₂Br)(SiMe₂H), and R₂C(SiMe₂Br)₂ in 25:60:15 ratio. Preparative g.l.c. (20% OV-101 at 220 °C) gave (bromodimethylsilyl)(dimethylsilyl)bis(trimethylsilyl)methane (0.17 g, 26%) (Found: C, 37.3; H, 8.8. C₁₁H₃₁BrSi₄ requires C, 37.1; H, 8.8%); $\delta_{\rm H}$ 0.28 (s, 18 H, SiMe₃), 0.37 (d, 6 H, SiMe₂H), 0.74 (s, 6 H, SiMe₂Br), and 4.16 (m, 1 H, SiH); v(SiH) 2 110 cm⁻¹.

(i) A solution of I_2 (0.19 g, 0.75 mmol) and $R_2C(SiMe_2H)_2$ (0.26 g, 0.94 mmol) in CCl_4 (5 cm³) was stirred at room temperature for 2 h. Evaporation under vacuum left a solid, shown (¹H n.m.r.) to be a mixture of $R_2C(SiMe_2H)_2$, R_2C -(SiMe₂I)(SiMe₂H), and $R_2C(SiMe_2I)_2$ in 30:40:30 ratio. The mixture was separated by t.l.c., and the second fraction yielded a solid, which was sublimed (80 °C at 0.1 Torr) to give (*iododimethylsilyl*)(*dimethylsilyl*)*bis*(*trimethylsilyl*)*methane* (0.08 g, 27%), m.p. > 320 °C (Found: C, 33.5; H, 7.9. $C_{11}H_{31}ISi_4$ requires C, 32.8; H, 7.8%); δ_H 0.34 (s, 18 H, SiMe₃), 0.44 (d, 6 H, SiMe₂H), 1.05 (s, 6 H, SiMe₂I), and 4.16 (m, 1 H, SiH); v(SiH) 2 110 cm⁻¹.

Methanolysis of $R_2C(SiMe_2H)(SiMe_2I)$.—A solution of R_2C -(SiMe_2H)₂ (0.60 g, 2.2 mmol) and I_2 (0.56 g, 2.2 mmol) in CCl₄ (20 cm³) was stirred for 2 h then diluted with light petroleum (30 cm³). Washing with aqueous NaHSO₃ then with water, followed by separation, drying (MgSO₄), and evaporation of the organic layer left a solid (0.72 g), shown by ¹H n.m.r. spectroscopy to be a mixture of $R_2C(SiMe_2H)_2$ (50%), $R_2C-(SiMe_2H)(SiMe_2I)$ (40%), and $R_2C(SiMe_2I)_2$ (10%). Half this mixture (0.36 g) was dissolved in MeOH, and the solution was kept under reflux for 1 h. Removal of solvent left a solid, which was separated by t.l.c. into two fractions. The first (0.11 g) was shown (¹H n.m.r.) to be unchanged $R_2C(SiMe_2H)_2$, and the second (0.10 g) to be a mixture of $R_2C(SiMe_2I)_2$ (20%) and $R_2C(SiMe_2OMe)_2$ (80%).

Preparation of $R_2C(SiMe_2X)(SiMe_2F)$ (X = H or I).—(a) The remaining half (0.36 g) of the mixture of $R_2C(SiMe_2H)_2$, $R_2C(SiMe_2H)(SiMe_1I)$, and $R_2(SiMe_2I)_2$ obtained in the preceding experiment was stirred for 30 min with AgBF₄ (0.40 g, 2.1 mmol) in CH₂Cl₂ (10 cm³). Filtration and removal of solvent left a solid, which was separated by t.l.c. into three fractions. The middle fraction was collected and sublimed (80 °C at 0.2 Torr) to give (*fluorodimethylsilyl*)(*dimethylsilyl*)*bis*(*trimethylsilyl*)*methane* (0.07 g), m.p. > 320 °C (Found: C, 44.8; H, 10.2. C₁₁H₃₁FSi₄ requires C, 44.8; H, 10.6%); δ_H 0.23 (s, 18 H, SiMe₃), 0.32 (d, 6 H, SiMe₂H), 0.38 (d, SiMe₂F), and 4.15 (m, 1 H, SiH); δ_F – 146.0 (m).

(b) A (1M) solution of ICl (0.14 mmol) in CCl₄ (0.14 cm³) was added to a stirred solution of $R_2C(SiMe_2H)(SiMe_2F)$ (0.040 g, 0.14 mmol) in CCl₄ (2.0 cm³). Removal of solvent left a solid, which was sublimed (100 °C at 0.2 Torr) to give (fluorodimethylsilyl)(iododimethylsilyl)bis(trimethylsilyl)methane (0.030 g, 53%); δ_H 0.41 (s, 18 H, SiMe₃), 0.59 (d, 6 H, SiMe₂F), and 1.11 (s, 6 H, SiMe₂I); δ_F – 145.7 (m).

Reactions of $R_2C(SiMe_2I)(SiMe_2H)$ with Halogens.—(a) A solution of Cl_2 (0.080 mmol) in CCl_4 (0.5 cm³) was added to a stirred solution of $R_2C(SiMe_2I)(SiMe_2H)$ (0.034 g, 0.080 mmol) in CCl_4 (1 cm³) at room temperature. Evaporation left a solid, shown (¹H n.m.r.) to be a 1:1 mixture of starting material and $R_2C(SiMe_2Cl)_2$.

(b) The procedure described under (a), but with Br_2 in place of Cl_2 , gave a 1:1 mixture of starting material and R_2C -(SiMe₂Br)₂.

Preparation of $R_2C(SiMe_2X)(SiMe_2I)$ (X = Cl or Br).—(a) A mixture of $R_2C(SiMe_2Cl)(SiMe_2H)$ (0.075 g, 0.24 mmol) in I_2 (0.065 g, 0.25 mmol) in CCl_4 (2 cm³) was stirred at room temperature for 5 h. Evaporation under vacuum left a solid, which was sublimed (80 °C at 0.1 Torr) to give (chlorodimethylsilyl)(iododimethylsilyl)bis(trimethylsilyl)methane (0.080 g, 76%), m.p. > 320 °C (Found: C, 30.5; H, 7.0. $C_{11}H_{30}ClISi_4$ requires C, 30.2; H, 6.9%); δ_H 0.41 (s, 18 H, SiMe₃), 0.74 (s, 6 H, SiMe₂Cl), and 1.13 (s, 6 H, SiMe₂I).

(b) A mixture of $R_2C(SiMe_2Br)(SiMe_2H)$ (0.13 g, 0.37 mmol) and I_2 (0.20 g, 0.79 mmol) in CCl_4 (5 cm³) was boiled under reflux for 1.5 h. Evaporation left a solid, which was taken up in light petroleum (10 cm³). The solution was washed with aqueous NaHSO₃, dried (MgSO₄), and evaporated to leave a solid, which was sublimed (140 °C at 0.1 Torr) to give (bromodimethylsilyl)(iododimethylsilyl)bis(trimethylsilyl)methane (0.094 g, 55%), m.p. > 320 °C (Found: C, 28.6; H, 5.9.

 $C_{11}H_{30}BrISi_4$ requires C, 27.4; H, 6.3%; δ_H 0.45 (s, 18 H, SiMe₃), 0.93 (s, 6 H, SiMe₂Br), and 1.18 (s, 6 H, SiMe₂I).

Methanolysis of $R_2C(SiMe_2Cl)(SiMe_2X)$ (X = Cl or I).—(a) A solution of $R_2C(SiMe_2Cl)_2$ (0.10 g) in MeOH (5 cm³) was boiled under reflux for 42 h. Evaporation left a solid, which was shown by its ¹H n.m.r. spectrum to be exclusively unchanged starting material. (b) A mixture of $R_2C(SiMe_2Cl)_2$ (0.10 g, 0.29 mmol) and AgNO₃ (0.10 g, 0.59 mmol) in MeOH (5 cm³) was stirred under reflux for 64 h. Filtration followed by evaporation gave a solid, shown by ¹H n.m.r. spectroscopy to be a 60:40 mixture of unchanged $R_2C(SiMe_2Cl)_2$ with $R_2(SiMe_2OMe)_2$.

(c) A solution of $R_2(SiMe_2Cl)(SiMe_2I)$ (0.030 g) in MeOH (2 cm³) was boiled under reflux for 5 d. Evaporation gave exclusively $R_2C(SiMe_2OMe)_2$ (¹H n.m.r.).

Preparation of $R_2C(Cl)(SiMe_2X)$ (X = H, Br, Cl, F, OMe, or OH).—(a) A 1.6M-solution of BuⁿLi (0.096 mol) in hexane (60 cm^3), cooled to -80 °C, was added dropwise under N₂ during 1 h to a stirred solution of R₂CCl₂ (20.0 g, 0.087 mol) in a mixture of THF (80 cm³), Et_2O (10 cm³), and pentane (4 cm³) maintained at -110 °C. The mixture was subsequently stirred for 2 h, then Me_2SiHCl (9.50 g, 0.10 mol), cooled to -80 °C, was added dropwise with stirring. The mixture was allowed to warm to room temperature then added to an excess of ice-cold saturated aqueous NH₄Cl. The organic layer was separated, washed, dried, and evaporated to leave a liquid, which was shown by g.l.c. (5% OV-101 at 180 °C) to consist of unchanged R_2CCl_2 (25%) and product (75%). The R_2CCl_2 was distilled off (96 °C at 30 Torr), and the residue, which solidified on cooling, was recrystallized from MeOH to give chloro(dimethylsilyl)bis-(trimethylsilyl)methane (8.0 g, 36%), m.p. 110 °C (Found: C, 42.6; H, 10.0. $C_9H_{25}ClSi_3$ requires C, 42.7; H, 10.0%); δ_H 0.18 (s, 18 H, SiMe₃), 0.27 (d, 6 H, SiMe₂), and 4.11 (m, 1 H, SiH); $v(SiH) 2 130 \text{ cm}^{-1}; m/z 254/252 ([M]^+), 239/237 ([M - Me]^+),$ and 73 ([Me₃Si]⁺).

(b) A (1M) solution of Br_2 (5.0 mmol) in CCl_4 (5.0 cm³) was added dropwise to a stirred solution of $R_2C(Cl)(SiMe_2H)$ (1.06 g, 4.2 mmol) in CH_2Cl_2 (5 cm³). The solution was kept for a further 15 min then evaporated. The solid residue was sublimed (70 °C at 0.2 Torr) to give (bromodimethylsilyl)(chloro)bis(trimethylsilyl)methane (1.35 g, 97%), m.p. 197 °C (Found: C, 32.6; H, 7.4. $C_9H_{24}BrClSi_3$ requires C, 32.6; H, 7.4%); δ_H 0.30 (s, 18 H, SiMe₃) and 0.75 (s, 6 H, SiMe₂); m/z 334/332/330 ([M]⁺), 319/ 317/315 ([M - Me]⁺), and 73 (SiMe₃).

(c) The procedure described under (b), but with Cl₂ in place of Br₂, gave chloro(chlorodimethylsilyl)bis(trimethylsilyl)methane (0.12 g, 88%), m.p. 155 °C (Found: C, 37.7; H, 8.1. C₉H₂₄Cl₂Si₃ requires C, 37.6; H, 8.4%); $\delta_{\rm H}$ 0.28 (s, 18 H, SiMe₃) and 0.60 (s, 6 H, SiMe₂).

(d) A mixture of $R_2C(Cl)(SiMe_2Br)$ (0.10 g, 0.30 mmol) and AgBF₄ (0.060 g, 0.31 mmol) in CH₂Cl₂ (5 cm³) was stirred for 30 min then filtered. Evaporation of the solvent left a solid, which was sublimed (80 °C at 0.1 Torr) to give *chloro(fluoro-dimethylsilyl)bis(trimethylsilyl)methane* (0.070 g, 86%), m.p. 112 °C (Found: C, 39.7; H, 8.8. C₉H₂₄ClFSi₃ requires C, 39.9; H, 8.9%); δ_H 0.23 (s, 18 H, SiMe₃) and 0.41 (d, 6 H, SiMe₂); δ_F -153.5 (m).

(e) A solution of $R_2C(Cl)(SiMe_2Br)$ (0.25 g) in a mixture of CH₂Cl₂ (5 cm³) and MeOH (5 cm³) was kept for 24 h, then evaporated to give *chloro(methoxydimethylsilyl)bis(trimethylsilyl)methane* (0.18 g, 84%), m.p. 120 °C (Found: C, 42.4; H, 9.3. C₁₀H₂₇ClOSi₃ requires C, 42.4; H, 9.6%); δ_H 0.18 (s, 18 H, SiMe₃), 0.26 (s, 6 H, SiMe₂), and 3.44 (s, 3 H, OMe).

(f) (i) A solution of $R_2C(Cl)(SiMe_2Br)$ (0.22 g) in Et₂NH (4 cm³) ('dried' over K_2CO_3 and stored over 4 Å molecular sieve) was kept for 10 min, then filtered and evaporated. The residue was sublimed (100 °C at 0.1 Torr) to give *chloro(hydroxy-dimethylsilyl)bis(trimethylsilyl)methane* (0.16 g, 90%), m.p. 113 °C (Found: C, 40.3; H, 9.0. C₉H₂₅ClOSi₃ requires C, 40.2; H, 9.4%); δ_H 0.25 (s, 18 H, SiMe₃), 0.34 (s, 6 H, SiMe₂), and 2.0 br (s, 1 H, OH); v(OH) 3 690 and 3 600–3 300 cm⁻¹.

(ii) A mixture of $R_2C(Cl)(SiMe_2Br)$ (0.50 g, 1.5 mmol) and Bu'OH (0.74 g, 10 mmol) (dried over CaH₂ and distilled from it before use) was kept under reflux for 30 min. Removal of volatile

material left a solid, which was shown by its 1 H n.m.r. and i.r. spectra to be identical with the product obtained in (i).

Preparation and Methanolysis of R₂C(SiMe₂OMe)-(SiMe₂Cl).—(a) A 1.6м-solution of BuⁿLi in hexane (1.0 cm³, 1.6 mmol) was added dropwise to a solution of $R_2C(Cl)$ - $(SiMe_2OMe)$ (0.40 g, 1.4 mmol) in a mixture of THF (10 cm³), Et₂O (0.5 cm³), and pentane (0.5 cm³) at -100 °C. The mixture was kept at -100 °C for a further 1 h then allowed to warm to -78 °C, and Me₂SiCl₂ (0.25 cm³, 2.1 mmol) was added with stirring. The mixture was allowed to warm to room temperature and the solvents and excess of Me₂SiCl₂ were removed under vacuum. The residual solid was extracted with pentane (10 cm³) and the extract was filtered and evaporated to give a solid, which seemed from its ¹H n.m.r. spectrum to be a mixture of unchanged R₂C(Cl)(SiMe₂OMe) (15%) and R₂C(SiMe₂OMe)-(SiMe₂Cl) (85%). Two recrystallizations from pentane followed by sublimation (100 °C at 0.2 Torr) gave (chlorodimethylsilyl)(methoxydimethylsilyl)bis(trimethylsilyl)methane (0.20 g, 41%), m.p. 297 °C (Found: C, 42.0; H, 9.4. C12H33ClOSi4 requires C, 42.2; H, 9.8%); δ_H 0.28 (s, 18 H, SiMe₃), 0.36 (s, 6 H, $SiMe_2OMe$, 0.61 (s, 6 H, SiMe_2Cl), and 3.30 (s, 3 H, OMe); m/z $327/325 ([M - Me]^+), 311/309 ([M - OMe]^+), 305 ([M - Me]^+))$ Cl]⁺), and 73 ([Me₃Si]⁺).

(b) A solution of R_2 CH(SiMe₂OMe) (0.50 g, 2.0 mmol) in THF (10 cm³) was added to a solution of MeLi (2.7 mmol) in Et₂O (3.0 cm³) and the mixture was stirred for 20 h then treated with Me₂SiCl₂ (0.37 cm³, 3.0 mmol). Addition of light petroleum (25 cm³) then an excess of H₂O, followed by washing, drying (MgSO₄), and evaporation of the extract gave a solid, which was sublimed twice (70 °C at 0.2 Torr) to give R₂C-(SiMe₂OMe)(SiMe₂Cl) (0.31 g, 45%), with properties identical with those given under (a).

The foregoing experiment was carried out before that described under (a). Several subsequent attempts to repeat it gave only $TsiSiMe_2Cl$.

(c) A solution of $R_2C(SiMe_2OMe)(SiMe_2Cl)$ (0.050 g) in MeOH (2 cm³) was kept for 1 h. Removal of the solvent under vacuum left a solid, shown by its ¹H n.m.r. spectrum to be exclusively $R_2C(SiMe_2OMe)_2$.

Acknowledgements

We thank the S.E.R.C. for support and for a Research Studentship (to D. E. R.), Mr. R. W. Bott and Dr. P. D. Lickiss for discussions, Mr. A. M. Greenway for the mass spectrometry, and Dow Corning, Ltd., for gifts of organosilicon compounds.

References

- 1 C. Eaborn, in 'Organosilicon and Bioorganosilicon Chemistry, 'ed. H. Sakurai, Ellis Horwood, Chichester, 1985, ch. 11; J. Organomet. Chem., 1982, 239, 93.
- 2 C. Eaborn, D. A. R. Happer, S. P. Hopper, and K. D. Safa, J. Organomet. Chem., 1980, 188, 179.
- 3 C. Eaborn and S. P. Hopper, J. Organomet. Chem., 1980, 192, 27.
- 4 C. Eaborn and F. M. S. Mahmoud, J. Chem. Soc., Perkin Trans. 2, 1981, 1309; S. A. I. Al-Shali and C. Eaborn, J. Organomet. Chem., 1983, 246, C34; S. A. I. Al-Shali, C. Eaborn, F. A. Fattah, and S. T. Najim, J. Chem. Soc., Chem. Commun., 1984, 318.
- 5 C. Eaborn and D. E. Reed, J. Chem. Soc., Chem. Commun., 1983, 495.
- 6 C. Eaborn, P. D. Lickiss, and N. A. Ramadan, J. Chem. Soc., Perkin
- Trans. 2, 1984, 267. 7 S. S. Dua, C. Eaborn, D. A. R. Happer, S. P. Hopper, D. K. Safa, and D. R. M. Walton, J. Organomet. Chem., 1979, **178**, 75.
- 8 C. Eaborn and A. I. Mansour, J. Organomet. Chem., 1983, 254, 273.
- 9 N. Wiberg, G. Preiner, and O. Schieda, *Chem. Ber.*, 1981, 114, 2087;
 N. Wiberg, G. Preiner, O. Schieda, and G. Fischer, *ibid.*, p. 3505; N. Wiberg, G. Preiner, and O. Schieda, *ibid.*, p. 3518.
- 10 C. Eaborn, D. A. R. Happer, and K. D. Safa, J. Organomet. Chem., 1980, 191, 355.
- 11 W. R. Bamford and B. C. Pant, J. Chem. Soc. (C), 1967, 1470.

Received 31st January 1985; Paper 5/166